
NCAEAS2303 | NCAEAS | ACET | January-February-2017 [(3)2: 06-09]

© 2017 IJSRST | Volume 3 | Issue 2 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X

 National Conference on Advances in Engineering and Applied Science (NCAEAS)

16
th

 February 2017

In association with
International Journal of Scientific Research in Science and Technology

6

Smart Time Table
Aafrin Siddiqui, Adeeba Sameen, Ibtesam Ali, Latika Lakkerwar, Rizwana Parveen

 Department of computer science & engineering, Anjuman College of Engineering, RTMNU, Nagpur, Maharashtra, India

ABSTRACT

Timetable creation is a very arduous and time consuming task. To create timetable it takes lots of patience and man

hours. Time table is created for various purposes like to organize lectures in school and colleges, to create timing

charts for train and bus schedule and many more. To create timetable it requires lots of time and man power .In our

paper we have tried to reduce these difficulties of generating timetable by Genetics Algorithm. By using Genetic

algorithm we are able to reduce the time require to generate time table and generate a Timetable which is more

accurate, precise and free of human errors. The first phase contains all the common compulsory classes of the

institute, which are scheduled by a central team. The second phase contains the individual departmental classes.

Presently this timetable is prepared manually, by manipulating those of earlier years, with the only aim of

producing a feasible timetable.

Keywords : Genetic Algorithm, Timetable, Constraints, Chromosomes

I. INTRODUCTION

The Time generation is the most Fundamental activity in

any Educational institution. It is also the most difficult

and time-consuming process.

The basic aim of our project is to automate the timetable

generation process. Our aim is to design a user

interactive program that generates the timetable

according to the given constraints. The program is

designed with special emphasis on the engineering

college requirements. The program can simply be

extended to suit to the requirements of other kinds of

institutions also.

Most colleges have a number of different courses and

each course has a number of subjects. Now there are

limited faculties, each faculty teaching more than one

subjects. So now the time table needed to schedule the

faculty at provided time slots in such a way that their

timings do not overlap and the time table schedule

makes best use of all faculty subject demands. We use a

genetic algorithm for this purpose. In our Timetable

Generation algorithm we propose to utilize a timetable

object. This object comprises of Classroom objects and

the timetable for every them likewise a fitness score for

the timetable. Fitness score relates to the quantity of

crashes the timetable has regarding alternate calendars

for different classes.

Classroom object comprises of week objects. Week

objects comprise of Days. Also Days comprises of

Timeslots. Timeslot has an address in which a subject,

student gathering going to the address and educator

showing the subject is related also further on discussing

the imperatives, we have utilized composite

configuration design, which make it well extendable to

include or uproot as numerous obligations. In every

obligation class the condition as determined in our

inquiry is now checked between two timetable objects.

On the off chance that condition is fulfilled i.e. there is a

crash is available then the score is augmented by one.

II. METHODS AND MATERIAL

The problem under consideration is to automate the

process of timetable scheduling in an educational

institution subjected to the given constraints. The user

will specify the constraints and these constraints will

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 2 | IJSRST/Conf/NCAEAS/ACET/2017/03

7

drive the scheduling of timetable. The user may specify

some of the following constraints.

 The number of departments in his institution.

 The number of staff personnel available in each

department.

 The number of classes in each department.

 The number of subjects to be dealt for each class.

 The minimum number of hours required completing

each subject.

 The total number of available hours for each day.

 The number of laboratories available.

 The number of practical sessions per week that are

necessary for each class.

 Along with the above-mentioned constraints the user

may specify some of the weak constraints such as

 A teacher should not engage two consecutive slots.

i.e. he should be provided with an interval of at least

one slot between two classes.

 The workload on all teachers should be uniform.

 The practical should be continuous for three

consecutive slots.

The teacher who is assigned with the subject having

practical must be engaged with the lab slots during

practical session i.e. he should not be engaged with other

slots while the practical session is going on.

Background

When you make a class schedule, you must take into

consideration many requirements (number of professors,

students, classes and classrooms, size of classroom,

laboratory equipment in classroom, and many others).

These requirements can be divided into several groups

by their importance. Hard requirements (if you break

one of these, then the schedule is infeasible)

 A class can be placed only in a spare classroom.

 No professor or student group can have more than

one class at a time.

 A classroom must have enough seats to

accommodate all students.

 To place a class in a classroom, the classroom must

have laboratory equipment (computers, in our case)

if the class requires it.Some soft requirements (can

be broken, but the schedule is still feasible)

 Preferred time of class by professors.

 Preferred classroom by professors.

 Distribution (in time or space) of classes for student

groups or professors. Hard and soft requirements, of

course, depend on the situation. In this example, only

hard requirements are implemented. Let's start by

explaining the objects which makes a class schedule

Objects of Class Schedule

 Professor

The Professor class has an ID and the name of the

professor. It also contains a list of classes that a

professor teaches.

Section

Group the Section Group class has an ID and the name

of the student group, as well as the number of students

(size of group). It also attends.

 Classroom

The Room class has an ID and the name of the

classroom, as well as the number of seats and

information about equipment (computers). If the

classroom has computers, it is expected that there is a

computer for each seat. IDs are generated internally and

automatically.

 Course

The Course class has an ID and the name of the course.

 Class

CourseClass holds a reference to the course to which the

class belongs, a reference to the professor who teaches,

and a list of student groups that attend the class. It also

stores how many seats (sum of student groups' sizes) are

needed in the classroom, if the class requires in the

classroom, and the duration of the class (in hours).

Algorithm

The genetic algorithm is fairly simple. For each

generation, it performs two basic operations:

Randomly selects N pairs of parents from the current

population and produces N new chromosomes by

performing a crossover operation on the pair of parents.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 2 | IJSRST/Conf/NCAEAS/ACET/2017/03

8

Randomly selects N chromosomes from the current

population and replaces them with new ones. The

algorithm doesn't select chromosomes for replacement if

it is among the best chromosomes in the population.

And, these two operations are repeated until the best

chromosome reaches a fitness value equal to 1 (meaning

that all classes in the schedule meet the requirement). As

mentioned before, the genetic algorithm keeps track of

the M best chromosomes in the population, and

guarantees that they are not going to be replaced while

they are among the best chromosomes.

// Genetic algorithm

class Algorithm

{

private:

// Population of chromosomes

vector<Schedule*> _chromosomes;

// Inidicateswheahter chromosome belongs to

// best chromosome group

vector<bool> _bestFlags;

// Indices of best chromosomes

vector<int> _bestChromosomes;

// Number of best chromosomes currently saved in

// best chromosome group

int _currentBestSize;

// Number of chromosomes which are replaced in

// each generation by offspring

int _replaceByGeneration;

// Pointer to algorithm observer

ScheduleObserver* _observer;

// Prototype of chromosomes in population

 Schedule* _prototype;

// Current generation

int _currentGeneration;

// State of execution of algorithm

AlgorithmState _state;

// Synchronization of algorithm's state

CCriticalSection _stateSect;

// Pointer to global instance of algorithm

static Algorithm* _instance;

// Synchronization of creation and destruction

// of global instance

staticCCriticalSection _instanceSect;

public:

// Returns reference to global instance of algorithm

static Algorithm&GetInstance();

// Frees memory used by gloval instance

staticvoidFreeInstance();

// Initializes genetic algorithm

Algorithm(intnumberOfChromosomes,

intreplaceByGeneration,

inttrackBest,

 Schedule* prototype,

ScheduleObserver* observer);

// Frees used resources

 ~Algorithm();

// Starts and executes algorithm

void Start();

// Stops execution of algoruthm

void Stop();

// Returns pointer to best chromosomes in population

 Schedule* GetBestChromosome() const;

// Returns current generation

inlineintGetCurrentGeneration() const { return

_currentGeneration; }

// Returns pointe to algorithm's observer

inlineScheduleObserver* GetObserver() const { return

_observer; }

private:

// Tries to add chromosomes in best chromosome group

voidAddToBest(intchromosomeIndex);

// Returns TRUE if chromosome belongs to best

chromosome group

boolIsInBest(intchromosomeIndex);

// Clears best chromosome group

voidClearBest();

};

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 2 | IJSRST/Conf/NCAEAS/ACET/2017/03

9

Figure 1: General view of Smart Timetable

Literature Survey

Trying to develop a software which helps to generate

Timetable for an Institution automatically. By looking at

the existing system we can understand that timetable

generation is done manually. Manually adjust the

timetable when any of the faculty is absent, and this is

the big challenge for Automatic Timetable Generator

that managing the timetable automatically when any of

the faculty is absent. As we know all institutions)

organizations have its own timetable, managing and

maintaining these will not be difficult. Considering

workload with this scheduling will make it more

complex. As mentioned, when timetable generation is

being done, it should consider the maximum and

minimum workload that is in a college. In those cases

timetable generation will become more complex. Also,

it is a time consuming process.

III. CONCLUSION

As discussed, an evolutionary algorithm, genetics

algorithm for time tabling has been proposed. The

intention of the algorithm to generate a time-table

schedule automatically is satisfied. The algorithm

incorporates a number of techniques, aimed to improve

the efficiency of the search operation. By automating

this process with the help of computer assistance

timetable generator can save a lot of precious time of

administrators who are involved in creating and

managing various timetables of the institutes.

IV. REFERENCES

[1]. Boehm B, "A Spiral Model of Software Developmentand

Enhancement", ACM SIGSOFT Software Engineering

Notes, ACM, 11(4):14-24, August 1986

[2]. Boehm B, "A Spiral Model of Software Development and

Enhancement", IEEE Computer, IEEE, 21(5):61-72, May

1988

[3]. Boehm, B, "Spiral Development: Experience,

Principles,and Refinements", Special Report CMU/SEI-

2000-SR-008, July 2000

[4]. D. Abramson. Constructing school timetables using

simulated annealing: sequential and parallel algorithms.

Manage. Sci., 37(1):98–113, January 1991.

[5]. David Abramson and J Abela. A parallel genetic algorithm

for solving the school timetabling problem. In 15

Australian Computer Science Conference, 1992.

[6]. Enrique Alba. Parallel Met heuristics: A New Class of

Algorithms. Wiley- Interscience, 2005.

www.tutorialspoint.com

[7]. Georgios Varsamopoulos “How to Write a Technical

Paper: Structure and Style of the Epitome of your

Research'"

[8]. AnujaChowdhary, Priyanka Kakde, ShrutiDhoke, Sonali

Ingle, RupalRushiya, Dinesh Gawande “TIMETABLE

GENERATION SYSTEM'" A paper published in IJCSMC

Vol. 3, Issue. 2, February 2014.

[9]. M.Lalena, “Traveling Salesman Problem using

GeneticAlgorithm'" retrieved from www.lalena.com/AI/T/.

[10]. Y. Has an A Bahanrum, O. Maharum, “A Job-Shop

Scheduling Problem using Genetic Algorithm'" Proceedings

of the Second IMT-GT Regional Conferenceon

Mathematics, Statistics and Applications. University Sains

Malaysia, Penang June 13-15, 2006.

[11]. J .J. Moreira, “A System for Automatic Construction

forExamination Timetable Using Genetic Algorithm'". The

Techne Polytechnic Studies Review Journal, Vol.6 No.9

2008.

[12]. V.T. Matthew, “Genetic Algorithm. Department of

CivilEngineering'", Indian Institute of Technology,

Bombay, Mumbai, 2005.

[13]. P. Ross, D. Corne, “Applications of (GA) Genetic

Algorithms'", Department of Artificial

Intelligence,University of Edinburgh, 2003. retrieved from

www.citeseerx.ist.psu.edu/viewdoc/download?

[14]. Mosaic Space Blog, “The Practice and Theory of

Automated Timetabling'" PATAT 2010, Mosaic

SpaceBlog, University and college planning and

management retrieved, from http://mosaicd.com/blog,

2011, Last accessed date 21st January 2012.

[15]. D. G. Maere, (2010). “How Working Group

AutomatedTimetabling was founded'", retrieved from

http://www.asap.ac.nott.ac.uk/, 2010, Last accessed date9th

December 2011.

